项目摘要
Proteins are major building blocks of life and sustain all functions of the cell. Single-molecule analysis of proteins by using nanopores can provide important information for disease diagnosis and treatment. In this project, we design a stepped nanopore integrated with a gate electrode to quickly identify, quantify, and characterize individual unlabeled proteins in a complex aqueous sample. The process of protein entering and passing through the stepped nanopore can be manipulated by electroosmotic flow by tuning the gate voltage. First, we will conduct the research on manufacturing process of the stepped nanopore and optimizing the pore size. Then, we will build a molecular dynamics model to describe the translocation processes of proteins with different structures though the stepped nanopore and investigate the mechanism of ionic current modulation. Furthermore, the stepped nanopore sensor will be used to detect various purified protein samples. The relationship between ionic current modulation and protein structure will be built by a machine learning algorithm. Finally, we will quantitatively analyze the proteins in the complex clinical samples. This project will improve our understanding of nanofluidics and provide a new single molecule biosensor for quantitative proteome analysis in clinical applications.
蛋白质是生命活动的主要承担者,利用纳米孔技术开展单分子水平的蛋白质检测,能够为疾病的预防与诊治提供重要的研究手段。为了实现对混合样本中不同的蛋白质分子快速定量分析,本课题提出一种集成门电极的阶梯型纳米孔。通过门电极调控纳米孔内的电渗流,操控蛋白质分子进入并通过纳米孔,有效解决待测分子过孔速度过快的问题。在此基础上,首先开展阶梯纳米孔的制造工艺与尺寸优化研究。其次配套建立分子动力学模型,研究不同结构的蛋白质分子在阶梯纳米孔内的动电迁移规律以及对离子输运的调制机理。并利用阶梯纳米孔检测不同的蛋白质样品,通过机器学习建立蛋白质分子与调制电流信号的对应模型。最后,结合临床需求,开展混合蛋白质样品的检测与定量分析。通过本课题的理论与实验研究,将丰富纳流体动力学的研究内容,开发出具有自主知识产权的单分子传感器件,为临床蛋白质分析提供关键技术。
结项摘要
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(1)
专利数量(4)
数据更新时间:{{ journalArticles.updateTime }}
数据更新时间:{{ journalArticles.updateTime }}
数据更新时间:{{ monograph.updateTime }}
数据更新时间:{{ sciAwards.updateTime }}
数据更新时间:{{ conferencePapers.updateTime }}
数据更新时间:{{ patent.updateTime }}